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Abstract 
The most widely used non-parametric method for trend analysis is the Mann-Kendall test associated with 

the Sen’s slope. The Mann-Kendall test requires serially uncorrelated time series, whereas most of the 15 

atmospheric processes exhibit positive autocorrelation. Several prewhitening methods have been 

designed to overcome the presence of lag-1 autocorrelation. These include a prewhitening, a detrending 

and/or a correction for the detrended slope and the original variance of the time series. The choice of 

which prewhitening method and temporal segmentation to apply has consequences for the statistical 

significance, the value of the slope and of the confidence limits. Here, the effects of various prewhitening 20 

methods are analyzed for seven time series comprising in-situ aerosol measurements (scattering 

coefficient, absorption coefficient, number concentration and aerosol optical depth), Raman Lidar water 

vapor mixing ratio and the tropopause and zero degree levels measured by radio-sounding. These time 

series are characterized by a broad variety of distributions, ranges and lag-1 autocorrelation values and 

vary in length between 10 and 60 years. A common way to work around the autocorrelation problem is 25 

to decrease it by averaging the data over longer time intervals than in the original time series. Thus, the 

second focus of this study is evaluation of the effect of time granularity on long-term trend analysis. 

Finally, a new algorithm involving three prewhitening methods is proposed in order to maximize the 

power of the test, to minimize the amount of erroneous detected trends in the absence of a real trend 

and to ensure the best slope estimate for the considered length of the time series. 30 

Keywords: Seasonal Mann-Kendall test, Theil-Sen’s slope, prewhiten, detrend, autocorrelation 

 

1. Introduction 
 

To estimate climate changes and to validate climatic models, long-term time series associated with 35 

statistically adapted trend analysis tools are necessary. The basic requirements needed to apply specific 

statistical tools are usually well described, but end-users often do not systematically test if the properties 

of their time series fulfill these requirements. An inappropriate usage of the statistical tools may lead to 
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misleading conclusions. It may also happen that a time series does not meet the complete criteria of any 

of the statistical tools. In that case, the statistical tool can be adapted or the use of different methods with 40 

complementary strengths and weaknesses should be applied. 

The time series properties that can cause misuse of statistical tools for trend analysis primarily concern 

the statistical distribution, the autocorrelation, missing data or periods without measurements, the 

presence of seasonality, irregular sampling, the presence of negatives and the rules applied in the case of 

data below-detection limits. A large number of trend analysis tools such as the whole family of least mean 45 

square and generalized least squares methods are parametric methods and, consequently, require 

normally distributed residues. Unfortunately, many atmospheric measurements, which strongly depart 

from the normal distribution, do not meet this requirement so that non-parametric methods have to be 

used. Non-parametric techniques are commonly based on rank and assume continuous monotonic 

increasing or decreasing trends. The Mann-Kendall (MK) test associated with the Sen’s slope is the most 50 

widely applied non-parametric trend analysis method in atmospheric and hydrologic research (Gilbert, 

1987; Sirois, 1998). While it has no requirement on data distribution, it must be applied on serially 

independent and identically distributed variables. The second condition of homogeneity of distribution is 

not met if a seasonality is present, but it can be solved by using the seasonal Mann-Kendall test developed 

by Hirsch et al. (1982). The first condition of independence is not met if the data are autocorrelated, which 55 

is often the case where atmospheric variables are controlled by autocorrelated physical or chemical 

processes. To analyze properly autocorrelated and not normally distributed errors, two different 

strategies are usually applied as described below.  

The first strategy tends to decrease the autocorrelation by aggregating time series into monthly, 

seasonally, yearly data or even in longer periods.  However, coarser time granularities (e.g., due to longer 60 

averaging periods) do not ensure autocorrelation is removed. Moreover, the aggregation implies a 

decrease of the information density in the time series, such as the diurnal or seasonal cycles, the variance 

of the data and to some extent the data distribution. The aggregation conditions (length of the time unit, 

making the time unit consistent with the observed seasonality, starting phase of the time series and the 

averaging method) may influence the trend results (de Jong and de Bruin, 2012; Maurya, 2013) in what is 65 

called the Modifiable Temporal Unit Problem (MTUP).  

The second strategy focuses on the development of algorithms to reduce the impact of the 

autocorrelation artifacts on the statistical significance of the MK test and on the Sen’s slope. Two kinds of 

algorithms are usually used: (i) the prewhitening of the data to remove the autocorrelation and (ii) 

inflation of the variance of the trend test statistic to take into account the number of independent 70 

measurements instead of the number of data points (the autocorrelation reduces the number of degrees 

of freedom in tests).  

In this study, the effects of various prewhitening methods on the MK statistical significance and on the 

slope are analyzed for time series of in situ aerosol properties, aerosol optical depth, temperature levels 

(tropopause and zero degree levels) and remote sensing water vapor mixing ratio. This study also analyses 75 

the effect of the time granularity on the MK statistical significance, on the strength of the slope and on 

the confidence limits of various atmospheric compounds for the atmospheric time series listed above. 

Additionally, a new methodology combining three prewhitening methods is proposed in order to handle 

correctly the autocorrelation without decreasing the power of the test while still computing the correct 

slope value. 80 
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2. The Mann-Kendall methodology (prewhitening methods) 
 

The MK-test for trends is a non-parametric method based on rank. The calculated S statistic is normally 

distributed for a number of observation N>10 and the significance of the trends is tested by comparing 

the standardized test statistic Z=S/[var(S)]0.5 with the standard normal variate at the desired significance 85 

level. For N≤10, an exact S distribution has to be applied (see e.g., Gilbert, 1987). Hirsch et al. (1982) 

extend the Mann-Kendall test to take seasonality in the data into account as well as multiple observations 

for each season. A global or annual trend can be considered only if the seasonal trends are homogeneous 

at the desired confidence level (Gilbert, 1987). Confidence limits (CL) are defined as the 100(1-p) 

percentiles of the standard normal distribution of all the pairwise slopes computed during the Sen’s slope 90 

estimator, where p is the chosen confidence limit. 

 

2.1   The problem of the autocorrelation in the MK-test 
 

The MK-test determines the validity of the null hypothesis H0 of the absence of a trend against the 95 

alternative hypothesis H1 of the existence of a monotonic continuous trend. While no assumptions are 

needed about the data distribution (i.e., the definition of a non-parametric test), the MK-test does require 

that the data are serially independent, namely the absence of autocorrelation in the time series. Statistical 

tests are prone to two types of error. The first is an incorrect rejection of the null hypothesis H0 that is 

called “type 1 error”. This error is related to a too high statistical significance leading to false positive 100 

cases. The second is an incorrect acceptance of the null hypothesis H0 that is called “type 2 error”. This 

error can be understood as the power of the test being too low leading to false negative cases. 

The adverse effect of the positive autocorrelation in time series on the number of type 1 errors was 

suggested by Tiao et al. (1990) and Hamed and Rao (1998) and later simulated (Kulkarni & von Storch, 

1995, Zwang and Zwiers, 2004, Blain, 2013, Wang et al., 2015, Hardison et al., 2019). All these studies 105 

clearly showed that positive autocorrelation in time series largely increases the number of type 1 errors, 

whereas prewhitening procedures increased the number of type 2 errors. Larger lag-1 autocorrelation 

(ak1) leads to higher percentage of type 1 errors and to larger bias in the Sen’s slope. Zwang and Zwiers 

(2004) also show that the occurrence of both types of error largely depends on the length of the time 

series, with longer periods leading to a strong reduction of errors and to a lower bias in the trend slope 110 

estimation. 

A popular solution to get rid of the autocorrelation problem in the MK-test is to aggregate the time series 

in order to decrease ak1. While the use of coarse time granularity effectively decreases the 

autocorrelation, the suppression of autocorrelation is not guaranteed, even in monthly or yearly 

aggregations. Moreover, aggregation greatly decreases the number of observations N and can potentially 115 

affect the MK-test errors, the slope biases and the CL.  

Two kinds of statistical procedures were developed to correct the MK-test for autocorrelation in the data. 

The variance correction approaches (Hamed and Rao, 1998; Yue and Wang, 2004; Hamed 2009; Blain, 

2013) consider inflating the variance of the S statistic so that the number of independent observations 

instead of the total number of observations is taken into account. These approaches appear not able to 120 
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preserve the significance level and the power of the MK-test in the case of correlated time series with a 

trend (Yue et al., 2002; Blain, 2013). The prewhitening approaches consider removing the lag-1 

autoregressive (AR(1)) process in the time series prior to applying the MK-test. Several algorithms with 

various strengths and defaults have been published and are described in the next section. Since negative 

autocorrelations are rare in atmospheric processes, only positive autocorrelations are taken into account 125 

in this study. Several studies have shown that the prewhitening methods are also applicable in case of 

negative serial correlations but with dissimilar consequences (Rivard and Vigneault, 200, Yue and Wang, 

2002,  Bayazit et al., 2004). 

 

2.2  The prewhitening methods 130 

 

This section describes all the prewhitening methods known to the authors. The advantages and 

disadvantages of each method are summarized in Table 1. It has to be noted that, for all the methods 

proposed, the prewhitening can be applied only if ak1 is statistically significant (ss) following a normal 

distribution at the two-sided 95% confidence interval. The first implemented prewhitening method 135 

(hereafter called PW) simply removes the lag-1 autocorrelation ak1
data from the original data X at the time 

t: 

𝑋𝑡
𝑃𝑊 = 𝑋𝑡 − 𝑎𝑘1

𝑑𝑎𝑡𝑎𝑋𝑡−1   (1) 

This PW method results in a low amount of type 1 errors, but it reduces the power of the test due to an 

over-/underestimation of ak1
data in the case of a positive/negative trend. A further procedure called trend-140 

free prewhitening (TFPW) consists of removing the autocorrelation on detrended data. Yue et al. (2002) 

published the most commonly used method that consists of: i) estimating the Sen’s slope 𝛽data on the 

original data; ii) removing the trend to obtain a detrended time series Adetr (eq. 2); iii) removing the lag-1 

autocorrelation ak1
detr on Adetr to  generate a detrended prewhitened time series Adetr-prew (eq. 3); and  iv) 

adding the trend back in to generate the processed time series to evaluate (i.e., 𝑋𝑡
𝑇𝐹𝑃𝑊−𝑌) (eq. 4): 145 

𝐴𝑡
𝑑𝑒𝑡𝑟 = 𝑋𝑡 − 𝛽  

𝑑𝑎𝑡𝑎𝑡  (2) 

𝐴𝑡
𝑑𝑒𝑡𝑟−𝑝𝑟𝑒𝑤

= 𝐴𝑡
𝑑𝑒𝑡𝑟 − 𝑎𝑘1

𝑑𝑒𝑡𝑟𝐴𝑡−1
𝑑𝑒𝑡𝑟  (3) 

𝑋𝑡
𝑇𝐹𝑃𝑊−𝑌 = 𝐴𝑡

𝑑𝑒𝑡𝑟−𝑝𝑟𝑒𝑤
+ 𝛽  

𝑑𝑎𝑡𝑎𝑡  (4) 

 

This approach is called trend-free prewhitening (TFPW-Y) and restores the power of the test, albeit at the 150 

expense of an increase of type 1 errors. Wang and Swail (2001) propose an iterative TFPW method that 

consists of: i) removing ak1
data from the original time series and correcting the prewhitened data for the 

modified mean (eq. 5); ii) estimating the Sen’s slope 𝛽prew on the prewhitened data 𝐴𝑐𝑜𝑟,𝑡
𝑝𝑟𝑒𝑤

; iii) removing 

the trend (𝛽prew) estimated on the PW data from the original data to obtain a prewhitened detrended time 

series 𝐴𝑐𝑜𝑟,𝑡
𝑑𝑒𝑡𝑟 (eq. 6); and iv) applying iteratively i-iii until the ak1 and slope differences become smaller than 155 

a proposed threshold of 0.05 (eq. 7).   

𝐴𝑐𝑜𝑟,𝑡
𝑝𝑟𝑒𝑤

= 𝑋𝑡
𝑃𝑊−𝑐𝑜𝑟 = (𝑋𝑡 − 𝑎𝑘1

𝑑𝑎𝑡𝑎𝑋𝑡−1)/(1 − 𝑎𝑘1
𝑑𝑎𝑡𝑎)  (5) 
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𝐴𝑐𝑜𝑟,𝑡
𝑑𝑒𝑡𝑟 = (𝑋𝑡 − 𝛽  

𝑝𝑟𝑒𝑤𝑡)  (6) 

𝐴𝑐𝑜𝑟,𝑡
𝑑𝑒𝑡𝑟−𝑝𝑟𝑒𝑤

= (𝐴𝑐𝑜𝑟,𝑡
𝑑𝑒𝑡𝑟 − 𝑎𝑘1

𝑑𝑒𝑡𝑟−𝑝𝑟𝑒𝑤

 
𝐴𝑐𝑜𝑟,𝑡−1

𝑑𝑒𝑡𝑟
  
)/(1 − 𝑎𝑘1

𝑑𝑒𝑡𝑟−𝑝𝑟𝑒𝑤
)  (7) 

𝑋𝑡
𝑇𝐹𝑃𝑊−𝑊𝑆 = 𝐴𝑐𝑜𝑟,𝑡

𝑑𝑒𝑡𝑟−𝑝𝑟𝑒𝑤
    (8) 160 

After n iterations until  𝑎𝑘1
𝑑𝑒𝑡𝑟−𝑝𝑟𝑒𝑤,𝑛−1

− 𝑎𝑘1
𝑑𝑒𝑡𝑟−𝑝𝑟𝑒𝑤,𝑛

< 0.05 𝑎𝑛𝑑 𝛽𝑝𝑟𝑒𝑤,𝑛−1 
− 𝛽𝑝𝑟𝑒𝑤,𝑛 < 0.05 

Wang and Swail’s (2001) TFPW method (TFPW-WS) restores the low number of type 1 errors without 

decreasing the power of the test (Zhang and Zwiers, 2004). The factor (1-ak1
detr-prew)-1 is needed to ensure 

that the prewhitened time series possesses the same trend as the original time series. The PW-cor method 

refers to the preliminary step of the first iteration in the TFPW-WS method and consequently corrects the 165 

prewhitened data by the same factor. To the knowledge of the authors, this PW-cor method is not 

referenced in the literature but is a potential method tested in this study. 

Finally, Wang et al. (2015) proposed a further approach in order to correct TFPW-Y for both the elevated 

variance of slope estimators and for the decreased slope caused by the prewhitening. Practically, the 

variance of Adetr-prew (i.e., 𝜎𝐴
2) is restored to the variance of X (i.e., 𝜎𝑋

2) to generate the AVC
detr-prew time series: 170 

𝐴𝑉𝐶,𝑡
𝑑𝑒𝑡𝑟−𝑝𝑟𝑒𝑤

= 𝐴𝑡
𝑑𝑒𝑡𝑟−𝑝𝑟𝑒𝑤

∗
𝜎𝑋

2

𝜎𝐴
2  (9) 

The slope estimator 𝛽data is decreased in the case of positive autocorrelation by the square root of the 

variance inflation factor (VIF) to obtain the corrected slope 𝛽𝑉𝐶
𝑑𝑒𝑡𝑟(eq. 11). Matalas and 

Sankarasubramanian (2003) provided a simple way to compute the limiting values of VIF for a sufficiently 

large sample size and a first order autocorrelation: 175 

𝑉𝐼𝐹 ≈ (1 + 𝑎𝑘1
𝑑𝑒𝑡𝑟)/(1 − 𝑎𝑘1

𝑑𝑒𝑡𝑟)  (10) 

So that 

𝛽𝑉𝐶
𝑑𝑒𝑡𝑟 = 𝛽  

𝑑𝑎𝑡𝑎/√(1 + 𝑎𝑘1
𝑑𝑒𝑡𝑟)/(1 − 𝑎𝑘1

𝑑𝑒𝑡𝑟)  (11) 

and 

 180 

𝑋𝑡
𝑉𝐶𝑇𝐹𝑃𝑊 = 𝐴𝑉𝐶,𝑡

𝑑𝑒𝑡𝑟−𝑝𝑟𝑒𝑤
+ 𝛽𝑉𝐶

𝑑𝑒𝑡𝑟𝑡  (12) 

 

Statistical simulations by Wang (2015) showed that this new variance corrected prewhitening method 

(VCTFPW) leads to more accurate slope estimators, preserves to some extent the power of the test, but 

only mitigates the type 1 errors. 185 
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2.3   A new algorithm involving three prewhitening methods 
 190 
As described in sect. 2.2 and Table 1, each of the presented prewhitening methods has a primary 

advantage: the low type 1 error for PW, the high-test power for TFPW-Y and the unbiased slope estimate 

for VCTFPW. TFPW-WS has both a low type 1 error and a high test power, but requires more computing 

time due to the iteration process. We propose a new algorithm, described in Fig. 1, which combines the 

advantages of each prewhitening method:  195 

● The ak1
data

 of the original time series is calculated. If it is not ss, the MK test is applied on the 

original time series. If ak1
data is ss, PW, TFPW-Y and VCTFPW are applied in order to obtain three 

prewhitened time series that are thereafter named after the specific prewhitening method for 

purposes of clarity. 

● The MK-test that defines the statistical significance is applied on the PW and TFPW-Y data. If both 200 

tests are ss or not ss, the trend is considered as ss or not ss, respectively. If TFPW-Y is ss but not 

PW, the trend is considered as a false positive due to the too high type 1 errors of TFPW-Y and 

the trend has to be considered as not ss. If PW is ss but TFPW-Y is not, then the trend is considered 

as a false negative due to the lower test power of PW and the trend has to be considered as ss. 

● The Sen’s slope is then computed on the VCTFPW data in order to have an unbiased slope 205 
estimate. 

 

3. Experimental 
 
In order to have a broader view of the effects of the various PW methods, several very different time 210 
series (Table 2) were used: three surface in-situ aerosol properties (absorption coefficient, scattering 
coefficient and number concentration) measured at Bondville (BND), a remote, rural station in Illinois, 
USA; the aerosol optical depth (AOD) measured at Payerne (PAY) on the Swiss plateau; the tropopause 
and the zero-degree levels measured by radio-sounding launched at PAY; and the water vapor mixing ratio 
at 1015 m measured by remote sensing at PAY. The shortest time series (AOD and water vapor mixing 215 
ratio) cover only 10 years (y) of measurements while the longest time series cover 60 y. The three in-situ 
aerosol properties are Johnson-distributed and diverge strongly from a normal distribution. The other 
time series exhibit distributions that also diverge from a normal distribution but to a lower extent so that 
some of them have residuals of a least mean square fit, which are normally distributed. The values of 
some of the time series span over several orders of magnitude and the scattering and absorption 220 
coefficients time series contains negative values due to detection limit issues in very clean conditions. The 
zero-degree level time series also includes negative altitudes, since it is interpolated to altitudes lower 
than sea level in the case of negative ground temperature at PAY (S. Bader et al., 2019)).  All the data have 
high ak1

data at the daily time granularity and exhibit clear seasonal cycles with maxima in summer.  

Trend analyses were applied on several periods. For all the data sets, a 10-year period is considered first 225 

and then further possible multi-decadal periods up to 60 y for the radio-sounding time series. For the in-

situ aerosol properties, tests with 4 to 9 y periods are also computed in order to illustrate the problems 

of trend analysis on very short time series.  The number of data points in the time series (N) depends on 

the length of the period and on the time granularity. The choice of temporal segmentation to address 

seasonality for the seasonal MK-tests can also affect N and was evaluated by segmenting the time series 230 

into months and meteorological seasons for time granularities up to one month. The MK-test was also 

applied on the complete time series without considering seasonality (no temporal segmentation) for 
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comparison purposes, even though, properly, seasonal MK-tests must be used when seasonal cycles are 

present. 

To assess the statistical significance, the two-tailed p-values are computed. For a more comprehensive 235 

presentation of the results, the statistical significance is presented here as 1 minus p-value so that the ss 

at a 95% confidence level is effectively given by ss=0.95. If not further specified, the ss of the trend and of 

ak1
data is given at the 95% confidence level, whereas CL are given at the 90% confidence level. The slopes 

(in percent) are normalized by the median of the data. Periods of at least 10 y and trends on these periods 

are further called decadal periods and decadal trends. 240 

 

4. Results and discussion 
 

As explained in the methodology section (Sect. 2), the trend results (e.g., the ss, the slopes and the CL) 

depend on a number of factors, the most important factors being the prewhitening method, the number 245 

of data points in the time series and the autocorrelation. The choice of the prewhitening method clearly 

affects the ss, the slope and the CL. Analysis choices such as the time granularity, the length of the 

analyzed period and the temporal segmentation to address seasonality affect ak1
data, N and the variance 

of the time series. There is a pronounced interdependency among these variables involving critical choices 

in the presentation of the results. Some general plots are first presented to provide insights into the 250 

primary results for some of the time series. They are followed by a more detailed analysis of the effects 

of the prewhitening method, the time granularity, the temporal segmentation, the length of the data 

series and the number of data points in the time series.  

MK trend results (Fig. 2) of the aerosol number concentration, the aerosol absorption coefficient, the 

tropopause level and the AOD are plotted as a function of the time granularity for the MK-test and for all 255 

the prewhitening methods. The results are shown for no temporal segmentation (circle) and for two 

different temporal segmentations to address seasonality (meteorological seasons (square) and months 

(triangle)). The three aerosol properties exhibit decreasing trends while the results of the tropopause level 

time series indicate a positive trend. The negative aerosol slopes are related to the decreasing aerosol 

load in Western Europe and North America (Collaud Coen et al., 2020, Yoon et al., 2016). The increasing 260 

tropopause level trend is related to global warming (Xian and Homeyer, 2019). The results of the trends 

will not be further described and discussed, since this study is only focused on the methodology of the 

trend analysis. 

The common features for all the time series considered here are: 

● As described in Wang et al. (2015), the absolute value of the VCTFPW slopes lies between the 265 

TFPW and the PW slope values. The absolute value of the PW slopes is always smaller than the 

TFPW slope values. 

● The MK, TFPW-Y, TFPW-WS and PW-cor methods result in similar slopes. 

● Large time aggregations usually lead to not ss ak1
data and, consequently, prewhitening methods 

do not need to be applied. The ak1
data of all prewhitening methods is not ss for three-month 270 

aggregations of the tropopause level and AOD datasets and for one-year aggregation of the 
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aerosol absorption coefficient and AOD. The ak1
data of the aerosol number concentration remains 

ss until the one-year aggregation. 

● CL are smaller for finer time granularities in the presence of ss ak1
data. 

● CL of MK, PW and TFPW-Y, which remove the lag-1 autocorrelation without compensation for the 275 

mean values and the variances, are smaller than for VCTFPW, PW-cor and TFPW-WS. PW-cor and 

TFPW-WS have the highest CL. 

● The ss often decreases for coarser time granularities occasionally leading to not ss trends for some 

of the prewhitening methods. PW, TFPW-WS and VCTFPW methods become not ss at finer time 

granularities than TFPW-Y and MK due to their lower number of false positives. 280 

● The discrepancies between prewhitening methods are larger than the discrepancies that occur 

when different temporal segmentations (months or meteorological seasons) are applied. 

Apart from these common results, there are features that depend on the time series, such as the effects 
of the applied temporal segmentation to address seasonality, the similarity of MK slopes with TFPW 
slopes, and the time granularity leading to not ss ak1

data. For example, the number of data points in the 285 
AOD time series (about 65 per year) induces higher CL for time granularities finer than the measurement 
frequency (about 10 days). 

 

4.1  Effects of the prewhitening methods  
 290 

As predicted theoretically, the ss depends on the prewhitening method, with higher ss for the MK and 

TFPW-Y methods that are related to higher type 1 errors (false positives), while PW and VCTFPW have a 

lower ss and a lower test power. This is verified on the individual time series, e.g., for the aerosol number 

concentration results presented in Fig. 3a. The yearly trend was computed for all periods (from 5y to 24y) 

at all considered time granularities (1 day to 1 month for the meteorological season temporal 295 

segmentation), leading to 40 trends. The results show:  

● The MK-test ss without prewhitening has a median of 1, with the ss for the upper quartile and 

upper whisker also equal to 1 and thus within the 95% confidence level so that only 5 trends 

out of 40 evaluated (i.e., 12.5%) are not ss.  

● The TFPW-Y ss has a median slightly lower than 1 and only 3 trends (7.5%) outside the 95% 300 

confidence level.  

● The TFPW-WS ss has a median of 0.996 which is lower than MK and TFPW-Y. The lower 

quartile for TFPW-WS, is 0.89, which is outside the 95% confidence level and indicates that 

32.5% of the trends are not ss. 

● The results of both PW and PW-cor are similar to the TFPW-WS with median ss of 0.995, a 305 

lower quartile of 0.84 and 32.5% of the trends are not ss. 

● The VCTFPW ss has the lowest median (0.98), first quartile (0.83) and lower whisker (0.63) 

leading to 37.5% of trends being not ss.  

Similar results are found for all time series, but with less difference amongst the methods when the trends 
are obviously present or absent and more differences for weak trends. 310 

According to Monte-Carlo simulations presented in the literature (e.g. Yue et al., 2002, Wang et al., 2015, 

Hardison et al., 2019), TFPW-Y leads to a high number of false positives. Since this study deals with 
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measured data, the rate of false positives is defined as trends that are ss with TFPW-Y but not ss with PW, 

since the latter is the method with the lowest rate of type 1 error. Figure 3b shows that the number of 

false positives depends, as expected, on the strength of the slope and on ak1
data. Weaker trends (smaller 315 

slopes in percent) are usually associated with lower ss and consequently lead to a larger number of false 

positives. The impact of the PW and TFPW-Y depends largely on ak1
data absolute values, i.e., higher ak1

data 

leads to stronger modification of the original time series with lower means (e.g., the mean of Xt
PW is less 

than the mean of Xt) and reduced variances for positive ak1
data. The highest ak1

data values (between 0.85 

and 0.9) found in the time series studied lead to 60% to 100% false positives while ak1
data values between 320 

0.8 and 0.85 lead to at least 40%  false positives.  

To obtain a better view of the weakness of each MK-test, the percentage of false positives and false 

negatives are reported in Table 3 for all the datasets. PW is used as the reference for false positives 

because it is the prewhitening method with the lowest type 1 error, while TFPW-Y is the reference for 

false negatives because it is the most powerful test. For the decadal trends, MK, TFPW-Y and VCTFPW 325 

have 33-49% of false positives. This suggests that half of the trends determined using VCTFPW are false 

positives. TFPW-WS has less than 2% of false positives whereas PW-cor has similar false positives as PW.  

While PW, PW-cor and TFPW-WS have a low percentage of false negatives, false negatives make up ~5% 

of the trends for MK and up to one third for VCTFPW. For the trends on short periods, the lower amounts 

of type 1 and 2 errors for MK and TFPW-Y are due to the overestimation of the slopes with these tests 330 

(see section 4.4) leading to more robust trends and enhanced ss. The unbiased estimate of the VCTFPW 

slope produces similar amounts of errors for the short-term trends as for the decadal trends. While the 

choice of PW as reference to compute the number of type 1 errors is obvious (Zhang and Zwiers, 2004, 

Yue et al., 2002, Blain, 2013, Wang et al. 2015), MK could also be considered as an alternative reference 

for the power of the test instead of TFPW-Y. If MK is the power of test reference, then the TFPW-Y 335 

percentage of false negatives is 9.4% for the decadal trends and 3.5% for the short-term trends. MK and 

TFPW-Y then each result in 3-10% of false negatives, however the false negatives are for different cases 

for the two tests. For the time series considered in this study, the following conclusions can be made: 1) 

PW performs very well with an almost vanishingly small (≤0.3%) number of false negatives and the ss of 

PW-cor is similar to that for PW; 2) TFPW-WS has a very low amount of both type 1 and 2 errors; 3) 340 

VCTFPW has a very high type 1 and 2 errors and should consequently not be used to determine the ss; 

and 4) it is not possible to determine whether MK or TFPW-Y is the most powerful method. 

The effects of the prewhitening method on the slope (Fig. 2 and 4) also follow the theoretically deduced 

assumptions: 

● The slope of the trend is always enhanced by the positive ak1
data, which adds a multiple of the 345 

t-1 value to the t value (e.g., Eqn 1 and 3). By removing the autocorrelation, PW leads to a 

strong decrease in the absolute value of the slope that becomes smaller than the MK slope. 

The CLPW are also somewhat decreased (Fig. 5) due to the decreased mean and variance of 

the prewhitened time series, relative to the original dataset.  

● Due to the detrending procedure, the absolute values of the TFPW-Y slope are larger than the 350 

PW slopes and similar to the MK slope values (Fig. 2), even if a tendency to have larger TFPW-

Y than MK slopes are observed (Fig. 4b). The CLTFPW-Y are similar to the CLPW because the 

variance and mean are similar for both the PW and TFPW-Y prewhitened time series. 

● Due to the corrected slope and variance, the absolute values of the VCTFPW slopes are much 

smaller than the TFPW-Y slopes but larger than the PW slopes.  355 
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These theoretical assumptions are validated in all cases with the ss trends analyzed in this study. The 

water vapor mixing ratio and the zero degree level both have a very high autocorrelation (about 0.9 at 

one-day time granularity). In such cases, the removal of the autocorrelation can lead to not ss trends and 

the absolute values of the VCTFPW slope are not always larger than PW slope values.   

The slope difference among the methods depends directly on ak1
data. A more nuanced estimate of the 360 

slope dependence is shown in Fig. 4 where the differences among the prewhitening methods are 
plotted. As already mentioned, the VCTFPW method largely mitigates the slope overestimate of the 
TFPW-Y method at large ak1

data so that the increase of the slope absolute value for increasing ak1
data 

does not exceed a factor of two (100% difference in Fig. 4a). The difference between VCTFPW and 
TFPW-Y slopes can reach 200-1000% for the largest ak1

data. The overestimation of the slope by TFPW-Y is 365 
much larger than the underestimation by PW if VCTFPW is taken as a reference for slope estimation. 
TFPW-Y slopes tend to be larger than MK slopes (Fig. 4b), with larger differences at high ak1

data leads. 
Finally, the slope difference between MK and both TFPW-WS and PW-cor does not depend on ak1

data 
and the TFPW-WS and PW-cor slopes are usually nearly identical as suggested by their similar 
relationship to the MK slope (Fig. 4c-d). 370 
 
The effects of the prewhitening method on CL (Fig. 5) are explained by their modification of the mean and 
the variance of the data. Removing the lag-1 autocorrelation increases the variance, but decreases the 
mean. The correcting factor of (1-ak1)-1 used in the TFPW-WS and PW-cor methods restores the mean (eq. 
5), whereas the VCPWTF method restores the initial variance (eq. 9). All increases of the variance make 375 
the CL interval wider, whereas the decrease of the mean decreases the CL interval. CLTFPW-Y and CLPW are 
the narrowest due to lower mean and variance values while CLTFPW-WS and CLPW-cor are the widest due to 
larger variance induced by the prewhitening and a mean identical to the original data. CLVCTFPW are 
intermediate with a variance similar to the original data but a lower mean. 

 380 

4.2   Effects of the time granularity 
 
Averaging is often used to decrease ak1

data in the time series. To investigate this, the ak1
data values are 

plotted as a function of the time granularity for the last 10 y of all the time series (Fig. 6a). The decrease 

of ak1
data with aggregation does not have a large impact until granularity is coarser than one-month. For 385 

one-month time granularity and less, aggregation leads to an ak1
data difference smaller than 0.2 in 5 of the 

time series. Three-month and one-year aggregation involve a sharper reduction of ak1
data. Additionally 

ak1
data for one-year aggregation is, for most of the time series, no longer ss and, sometimes, even negative. 

The decrease in ak1
data is not continuous with time granularity, with ak1

data often larger for 10 days or one 

month than for 3 days aggregation. These local minima can be explained by a competitive effect between 390 

the ak1
data decrease and a reduction of the measurement variance. The spread of the slopes of the aerosol 

number concentration for the one-year aggregation on Fig. 2c shows that the yearly data still have a ss 

ak1
data for the longest periods of 20 and 24 years (see similar cases in Fig. 2). For shorter periods (5 to 9 

years), the ak1
data decreases rapidly for averaging longer than 10 days and even becomes negative for 

yearly averages.   395 

TFPW-Y and TFPW-WS remove the autocorrelation computed from the detrended data. Fig. 6b and 6c 
show the difference in ak1 between the original and the detrended time series as a function of the time 
granularity. The ak1

detr continuously increases with aggregation whereas ak1
detr-prew,n sometimes decreases 

(e.g., for one-month or three-months aggregations for scattering coefficient and number concentration, 
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respectively). While the differences in ak1 from the original time series are larger for TFPW-WS than for 400 
TFPW-Y, they remain relatively small and exceed 0.05 only in few cases.  

Figure 7 presents the effect of the time granularity on ss of the trends for the zero degree level data set 
for different periods (identified by colors) and various prewhitening methods (identified by symbols). MK 
and PW-cor are not included since their ss values are nearly identical to the TFPW-Y and PW ss values, 
respectively. As expected, TFPW-Y exhibits the highest ss, followed by TFPW-WS, while PW and VCTFPW 405 
exhibit the lowest ss. The ss always decreases at coarser time granularities for all prewhitening methods 
until ak1

data becomes not ss, usually at an average of 3 months. This decrease in ss is larger for the PW, 
TFPW-WS and VCTFPW than for TFPW-Y. For robust trends analyzed (e.g., the period of 40 y in Figure 7), 
the trend remains ss at the 95% or 90% confidence level for the finest time granularity (3 days for PW and 
TFPW-WS and 1 month for TFPW-Y ), but this is often not the case for weak trends.  410 

When ak1
data is not ss at high time granularity, the prewhitening methods can no longer be applied and 

the ss is similar for all methods. Without prewhitening, the ss is inversely proportional to the variance 

reduction caused by the aggregation. For TFPW-Y, the removal of the prewhitening due to not ss ak1
data 

at three months aggregation corresponds however to a decrease of the ss of the trend. The ak1
detr-prew,n of 

the 40 y period is ss for the one-year time granularity as can be seen by the TFPW-WS ss that is different 415 

than the ss of the other prewhitening methods (Fig. 7), leading to lower ss than without prewhitening. 

The increase of the ss with the period length is also obvious, with smaller differences between TFPW-Y 

and PW for longer periods. The longest period (40 y) and the finest time granularities (1-3 days) lead to 

no false positives for TFPW-Y, which is not the case for shorter periods or coarser time granularities.  

The effect of the time granularity on the slope strongly correlates with the ak1 time granularity 420 

dependence. A decrease of the autocorrelation with aggregation induces a reduction of the prewhitening 

effects on the slopes leading to a decrease in the differences between slopes (see Figs. 2 and 4). 

The loss of ss with coarser time granularities is even more pronounced when evaluated for each month 

or meteorological season (Fig. 8).  This is due to the lower N per season (1/4 for meteorological season 

and 1/12 for months). Similarly, the decrease in the difference in slopes due to aggregation and the 425 

reduction of the prewhitening effects is more pronounced when temporal segmentation is applied due to 

the reduction of the number of data points in each temporal segment. 

Fig. 8 clearly shows that the coarsest time granularities enhance the variability for the different temporal 

segmentation choices. For example, the interval between the minimum and maximum slopes is 2.3 larger 

for the monthly average than for the daily average for the scattering coefficient temporally segmented 430 

into  12 months (Fig. 8a) and 3.7 times larger for the absorption coefficient with meteorological seasons 

(Fig. 8b), respectively. In some cases, the sign of the slope changes with the time granularity when the 

trends are not ss. As already observed in Fig. 2, the CL also increase with time granularity due to the 

decrease in N. The effects of the time granularity on the ss, the slope and the CL are more pronounced for 

a monthly than for meteorological seasons temporal segmentation due N being three times lower for the 435 

months than it is for the seasons.  

 

 

 

 440 
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4.3   Effects of temporal segmentation to address seasonality 
 
The division of the year into temporal segments is a necessary condition of the MK-test if the data exhibit 

a clear seasonality. Statistically, it is important to have equivalent segments with similar lengths to obtain 445 

similar N per segment. The time series presented in this study are all dependent on phenomena related 

to the temperature (e.g., atmospheric circulation, boundary layer height, source changes, etc.), and thus 

change with the meteorological seasons. The seasonality of time series primarily affected by other 

meteorological phenomena (e.g., the Asian monsoon, which is better characterized by dry and humid 

seasons, rather than the standard 4 meteorological seasons) have to be carefully studied in order to 450 

choose both the appropriate temporal segmentation and the appropriate time granularity. For example, 

a time granularity that does not respect the seasonal variation of a time series can lead to erratic results 

(de Jong and de Bruin, 2012).  

 

The effects of the chosen temporal segmentation to address seasonality are presented here for the 455 

VCTFPW slope and CL, but they are similar for the other methods as well. The effect of including temporal 

segmentation on the ss of the yearly trend is rather small with a difference of only 2-3% in the number of 

ss trends (not shown). The division into four meteorological seasons always results in the largest number 

of ss trends, while the division into 12 months is less powerful for short periods due to the low number of 

points for each month (N ≤ 10) for a 10 y period.  The application of no temporal segmentation, which 460 

does not met the MK-test requirements in the presence of a seasonality, is less powerful for decadal 

trends. No systematic effects due to the choice of temporal segmentation on the slope were found. 

Different temporal segmentation choices lead, most of the time, to comparable slopes. The effect of the 

prewhitening method is always much more pronounced than the effect of the choice of temporal 

segmentation. 465 

 

Figure 9 presents the CL intervals normalized by the trend slope as a function of the time granularity for 
the aerosol scattering coefficient without temporal segmentation (blue) or divided into monthly (green) 
or meteorological seasons (red) for several periods between 5 y and 24 y. Due to the decrease of N, finer 
temporal segments induce an increase of the CL. In the case presented in Fig. 9, monthly segments have 470 
CL intervals four times larger than when seasonality is not considered and 2 times larger than 
meteorological seasons for the longest periods. It should be recalled, however, that not considering 
seasonality for time granularity finer than one-year is not allowed due to the observed seasonal variation 
in the aerosol scattering coefficient time series. 

In the case of a seasonal MK-test, yearly trend results can be considered only if the trends are 475 
homogeneous among the temporal segments (see Sect. 2.1). The division of the time series into four 
meteorological seasons leads to more homogeneous trends (three times and 25 times for decadal and 
short periods, respectively) at the 90% confidence level than the division into 12 months (Table 4). Thus, 
if meteorological seasons correspond to the observed temporal cycle of the studied time series then those 
seasons should be the preferred temporal division to consider rather than monthly divisions. Monthly 480 
segmentation could be considered when the observed variability of time series is shorter or longer than 
the 3 months length of a meteorological season.  
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4.4  Effects of length of the time series  485 

 
As already stipulated under sect. 2.1, a special statistic that deviates from the normal statistic has to be 

applied to compute the statistical significance for N≤10. Shorter periods involve smaller N, and N is further 

affected by the choice of granularity. The special statistic has to be applied for trends computed on one-

year averages and period < 11 years (i.e., N≤10). Note: the effect of the natural variability of a data set on 490 

trends computed on short periods will not be directly discussed here, but only the statistical effect on the 

trends determined for the various time series studied here.  

Fig. 10 shows the effect of the reduction of the period length on the slope, the CL and the ss for the aerosol 
absorption coefficient dataset. The first obvious effect is that the absolute values of the slope are larger 
for shorter periods and there are large differences both for the individual months and meteorological 495 
seasons. Further, these large slopes for short time periods are associated with high CL and low ss. They 
are due to the cumulative effects of the predominant importance of the first and last years for short 
periods and to the low N in the time series. For the shortest period considered here (4y), the division of a 
daily time series into four meteorological seasons involves trends computed with N=360 (=4 years*3 
months*30 days) whereas monthly trends for the same time series are computed with N=120 (=4 years*1 500 
month*30 days). The reduction of N by a factor of three explains the larger and more variable slope values, 
the higher CL and the lower ss of the monthly trends compared to the meteorological season’s trends. 
The effects due to the reduction of N are minimized by the use of daily time granularity, but they are 
maximized by the use of larger aggregations leading for example to N=12 and 4, respectively, for monthly 
aggregation (hence the tendency for increases in CL with larger aggregation in Fig. 9). It should be noted 505 
that the influence of the length of the time series is usually more important than the choice of time 
granularity. Also, for short time series, the yearly slopes can differ depending on the chosen temporal 
segmentation (see, e.g., the yearly slopes of 5y, 6y and 7y on Fig. 10). These results, then, support the 
standard recommendation of only computing long-term trends on time series of at least 10y. 

 510 

4.5  Effects of the number of data points 
 

The number of data points N in the time series is a key variable underlying the effects of the time 

granularity, the temporal segmentation to address seasonality and the period discussed in the previous 

sections. Because a long-term trend analysis is statistically sound only for time series of at least a decade 515 

in length, only decadal and multi-decadal trends are considered in this section. Figure 11 is computed 

using the new algorithm (e.g., Fig. 1) for all decadal trends for all time series, temporal segmentation 

choices and time granularities and represents the percentage of ss trend as a function of slope and N 

categories. Fig. 11a shows that time series with robust trends, identified by high normalized slopes, need 

fewer data points to reach the 95% confidence level significance than time series with less robust trends. 520 

In contrast, weaker trends, identified by low normalized slopes, need at least several hundreds or even 

thousands of data points to become ss. In consequence, the smallest slopes need longer periods and finer 

time granularities to be identified as statistically significant. 

Figure 11 also clearly shows that small N leads statistically to larger normalized slopes and thus 

demonstrates that trends computed on short periods and with a long averaging time are usually greatly 525 

overestimated. The use of prewhitening methods with a large type 1 error will, in addition, falsely indicate 
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ss trends (see Sect. 4.1 and Table 3). The use of MK or TFPW-Y tests on short, highly autocorrelated and 

highly aggregated time series will definitely produce false positive trends with high absolute slopes. 

The effects of the temporal segmentation to address seasonality and the time granularity on the 
confidence limits are primarily caused by the modification of N. The direct impact of N on CL as a function 530 
of slope robustness is plotted on Fig. 11b. As expected, weaker slopes and lower N lead to the largest CL 
with values of thousands percent of the slope for the worst cases. These high CL are not obviously related 
to a low ss if a prewhitening method with high type 1 error was used. 

 

5. Discussion 535 

 
The main effects of the various prewhitening methods on ak1, the slope, the ss and the CL can be 

summarized as follow: 

● ak1 depends mostly on the intrinsic characteristics of the time series and on the choice of  time 

granularity 540 

● The CL intervals depend primarily on the number of data points and, thus, the length of the time 

series, choice of time granularity and of temporal segmentation to address seasonality. 

● The ss depends mostly on the robustness of the slope, on the number of data points and on the 

prewhitening method. 

● The slope depends mostly on the prewhitening method, with PW leading to too low slopes and 545 

MK, TFPW-Y, TFPW-WS and PW-cor resulting in absolute values of the slope that are too high, 

considering VCTFPW as an unbiased slope estimate. 

 

The prewhitening methods presented here consider only the lag-1 autocorrelation. Atmospheric 

processes can, sometimes, be better represented by a higher order of autoregressive models with ss 550 

partial correlations at lags>1 (Table 2).  These higher order lag correlations could be considered by 

prewhitening with the appropriate number of lags, but this was not tested during this study. Klaus et al. 

(2014) applied higher order autoregressive prewhitening to stable oxygen and hydrogen isotopes 

measured in precipitation and concluded that the ss is mostly decreased by higher order lags correlations 

whereas the slope is less affected. The effect of AR(2) (auto-regressive process of order 2) autocorrelation 555 

with  ak2= 0.2 on the type 1 and 2 errors of MK and TFPW-Y was found to be similar to strong AR(1) 

autocorrelation (Hardison et al., 2019) in Monte Carlo simulations, for slopes and residual variances 

derived from 124 ecosystem time series.  

Time series with a pronounced seasonality can also exhibit an ak1 seasonality. Tests were performed in 

order to compute ak1 for the various choices of the temporal segmentation instead of on the entire time 560 

series. This variant was not further pursued due to the difficulty in applying seasonal ak1, which were not 

always ss, leading to the application of the prewhitening method to only some of the temporal segments. 

These differences in the treatment of each segment yielded erratic results that could not be considered 

as homogeneous for a yearly trend. 

The slopes computed from the various prewhitening methods for the real atmospheric data sets 565 

considered here exhibit a large spread and only studies with simulated time series are able to provide 

insight into the slope bias of the methods. Yue et al. (2002) shows that TFPW-Y leads to a better estimate 
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of the slope than PW, which systematically underestimated the real slope. Zhang and Zwiers (2004) 

compared the MK, PW and TFPW-WS methods for various slope and ak1 strengths as well as for various 

periods (30-200 years). They show that PW underestimates the slope for all slope strengths and periods 570 

for positive ak1, with the biases being larger for higher autocorrelation.  They also note that the biases did 

not decrease with the length of the time series. In contrast, they find that MK and TFPW-WS overestimate 

the slope for period < 200 y and high ak1. In this case they showed that, while the biases are also larger 

for higher autocorrelation, they are significantly lower for long periods (200y), allowing calculations of 

almost unbiased slope estimates. These Monte Carlo simulations used yearly time granularity so that their 575 

N corresponds to the length of the period.  Their evaluation of the importance of N is not as nuanced as 

presented in our study in which N could be larger than the number of years in the time series for time 

granularities < 1 y.  

The results of our study should be compared to the shortest periods (30 y) of the Zhang and Zwiers (2004) 

results, where they found an underestimation of the slope by PW and an overestimation by MK and TFPW-580 

WS.  Wang et al. (2015) showed that the VCTFPW method leads to root mean square errors (RMSE) of the 

slope lower than the RMSE for TFPW-Y slopes for all slopes and ak1 values for a time series period of 30 y. 

A longer period of 60 y results in lower VCTFPW RMSE only for small slopes. Finally, a recent study 

(Hardison et al., 2019) shows that both generalized least squares model and the Sen’s slope of MK-tests 

(MK and TFPW-Y) consistently overestimate the trend slope with strong ak1 and short periods (up to 80% 585 

for 10 y and 21% for 20 y). The spread of the estimated slopes increases with ak1 and is mediated by the 

length of the period. This suggests that the choice of the VCTFPW method as an unbiased estimator for 

time series shorter than 100 years is probably a better choice than TFPW-Y, but has to be considered in 

the context of the CL size in order to obtain a better estimate of the real long-term trend.   

All the simulation studies described above report slope per year based on yearly aggregated time series. 590 

Their number of data points corresponds then to the time series length. In contrast, N as defined in this 

study, could be much larger for an equivalent time series length as we considered data aggregations 

between 1d to 1y. The shortest simulated periods were 10 y (Hardison et al., 2019, Yue and Wang, 2004, 

Hamed, 2009), 20 y (Yue et al., 2002), 25 y (Bayazit and Önöz, 2007) and 30 y (Zhang and Zwiers, 2004, 

Wang et al., 2015). All the recommendations of these authors about erratic results for “short periods” 595 

always concern decadal or even multi decadal trends and are, consequently, even more relevant for trend 

results for periods shorter than 10 y. 

Based on the results presented in this study as well as the findings from the literature referenced above, 

the following recommendations can be made: 

● A prewhitening method must be used on time series when ak1
data is ss. 600 

● The seasonal MK-test must be used on time series with a clear seasonal cycle. The chosen 

temporal segmentation to address seasonality for the MK-test has to be compatible with the 

observed seasonality of the time series. 

● Finer time granularities should be used in order to maximize the number of data points and will 

yield smaller confidence limits and larger ss. The choice of the time granularity must also be 605 

compatible with the observed seasonality of the time series. 

● Periods shorter than 10 y must be handled with great caution and periods shorter than 8 y 

should not be used for long-term trend analysis. 
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● When describing trend results the sign of the slope should not be mentioned if it is not ss, 

because not ss trends cannot, by definition, be distinguished from zero trends. Moreover, not ss 610 

trends have a larger dependency on how the trends are computed (time granularity, period, 

prewhitening method, temporal segmentation to address seasonality,…). 

● In the presence of ss lag-1 autocorrelation, either PW and TFPW-Y together or TFPW-WS should 

be used to assess statistical significance.  MK, TFPW-Y alone and VCTFPW lead to a high number 

of false positives. 615 

● The slope should be corrected in order to take into account the effect of the prewhitening on 

the mean and the variance of the time series. We recommend the VCTFPW method to eliminate 

slope biases, at least for time series shorter than 30 y. 

● In presence of ss trends, the confidence limits must also be considered in order to assess the 

uncertainty in the slope. 620 

 

 

6. Conclusion 
 

Several prewhitening methods including solely prewhitening, the trend-free prewhitening from Yue et al. 625 

(2002) and from Wang and Swail (2001) as well as the variance-corrected trend-free prewhitening method 

of Wang et al. (2015) were tested on seven time series of various in-situ and remote sensing atmospheric 

measurements. Consistent with the literature, the use of MK, TFPW-Y and VCTFPW results in a large 

amount of false positive results while TFPW-WS results in less than 2% of false positives. The power of the 

test is good for all the applied MK-tests for the time series considered here.  630 

The effect of the choosing time granularities from 1 day to one year was also evaluated since a common 

way to overcome the autocorrelation problem is to average time series to a coarser time granularity. It 

was found that the ak1
data

 could remain ss up to at least monthly granularity and was sometimes still ss 

for yearly averages. Finer time granularities exhibit higher ak1
data leading to a larger difference of the 

estimated slope by the various prewhitening methods. MK, TFPW-Y, TFPW-WS and PW-cor result in the 635 

largest absolute values of the slope and PW the smallest. VCTFPW slopes are found between these two 

extremes. The confidence limits are much broader for coarser time granularities and the ss is lower, so 

that ss at the 95% confidence level is rarely achieved. The main impact of keeping a fine time granularity 

is that it allows computation of the trends on a high number of data points, which improves the power of 

the test and decreases the uncertainties in the slope. 640 

Since all the time series studied exhibited clear seasonal cycles, two temporal segmentations (12 months 

and 4 meteorological seasons) were tested for the seasonal MK-test. The segmentation into four 

meteorological seasons resulted in more homogeneous trends among the segments, a necessary 

condition to compute yearly trends. The division into meteorological seasons also resulted in a higher 

number of data points available in each temporal segment relative to division into monthly segments. No 645 

systematic effect of the choice of temporal segment on the slope was observed and the difference 

between temporal segment choices was always much lower than the differences among the prewhitening 

methods. 
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Finally, a new algorithm was proposed combining several prewhitening methods to obtain a better 

estimate of trend and statistical significance than would be achieved with any individual prewhitening 650 

method.  PW and TFPW-Y were used to compute the statistical significance of the trend and VCTFPW was 

applied to estimate the slope. This approach takes advantage of the low type 1 errors of PW,  the high 

test power of TFPW-Y and the less biased slope estimated by VCTFPW. 
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Tables  
 775 

Table 1: Advantages and disadvantages of the MK-test and of the various prewhitening methods. 

Method How it works  Advantages/Disadvantages 

MK  Applied on the data without modification  High type I error 
 High test power 

 slope increased by ak1
data 

PW 
(Kulkarni &  von 
Storch, 1995) 

 Remove the autocorrelation   Low type I error 
 Low test power 
 Smaller absolute slope  

PW-cor 

 

 Remove the autocorrelation  
 Preserve the slope 

 Low type I error 
 Low test power 
 Similar slope as MK 

TFPW-Y  
(Yue et al., 2002) 

 Remove the slope 
 Remove the autocorrelation 
 Add the trend 

 High type I error 
 High test power 
 Larger absolute slope 

TFPW-WS  
(Wang & Swail, 
2001) 

 Apply TFPW iteratively until ak1
detr-prew and the 

slope stay constant: 
 Remove the autocorrelation 
 Compute the slope 
 Remove the trend from the original 

data 
 Remove the final ak1

detr-prew 

 Low type 1 error 
 High test power  
 Similar slope as MK 

VCTFPW 
(Wang, 2015) 

 Remove the trend 
 Remove the autocorrelation  
 Correct the variance  similar to initial 

variance 
 Add the trend with corrected slope 

 Middle type I error 
 Medium test power 
 Unbiased slope estimate 
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Table 2: Description of the time series: time series with units, monitoring station, period, instrument type, 
original granularity, ranges (1 and 99 percentiles (1%ile and 99%ile)), mean, median and standard deviation 780 
(STD), lag-1 autocorrelation of the observations (ak1

data) and number of ss partial autocorrelations for the 
10 y period (order), number of data in the 10y period (N) and reference.  

Time series Station Period Instrument Granularity 1%ile 
99%ile 

Mean 
Median 
STD 

ak1
data 

 order 
N reference 

Aerosol 
scattering coef. 
[Mm-1] 

BND 1995-2018 TSI 
Nephelometer 

1 h  6.57 
167.80 

43.51 
33.04 
33.85 

0.60 
2 

3485 Sherman 
et al., 
2015 

Aerosol 
absorption 
coef. [Mm-1] 

BND 1995- 2018 PSAP and CLAP 1 h 0.51 
11.06 

3.40 
2.85 
2.30 

0.53 
2 

3431 Andrews 
et al., 
2019 

Aerosol number 
concentration 
[cm-3] 

BND 1995-  2018 CPC 1 h 283 
11636 

4139 
3674 
2517 

0.58 
2 

2979 Laj et al., 
2020 

Aerosol optical 
depth 

PAY 2006-2015 PFR 1 h 0.025 
0.285 

0.126 
0.113 
0.064 

0.72 
2 

641 Nyeki et 
al., 2019 

Tropopause 
level [m] 

PAY 1958-2018 Radio-sonde 12 h 7540 
14660 

11178 
11280 
1425 

0.70 
2 

3636 Brocard et 
al., 2013 

Zero degree 
level [m] 

PAY 1958-2018 Radio-sonde 12 h -859 
4437 

2333 
2457 
1208 

0.89 
3 

3640 Brocard et 
al., 2013 

Water Vapor 
Mixing ratio 
[g/kg]  

PAY 2009-2018 Ralmo Lidar 0.5 h 1.41 
11.88 

5.90 
5.57 
2.63 

0.88 
3 

2868 Hicks-Jalali 
et al., 
2019 

PSAP=Particle Soot Absorption Photometer, CLAP=Continuous Light Absorption Photometer, CPC=Condensation Particle Counter, 
PFR=Precision Filter Radiometer. 

 785 

Table 3: Percent of false positives and false negatives for all data sets relative to a reference test for the 
MK-tests and prewhitening methods for periods of at least 10y (decadal trends) or smaller than 8y. 

Period Type of error MK TFPW-Y TFPW-WS PW PW-cor VCTFPW 

≥ 10y 
N=2185 

False positive  33.5 37.4 1.7 reference 0.0 48.5 

False negative  5.3 reference 0.2 0.2 0.2 26.1 

< 8y 
N=1045 

False positive 19.8 14.3 1.1 reference 0.0 44.9 

False negative  7.0 reference 0.3 0.0 0.3 36.6 

 

Table 4: Percentage of yearly trends with homogeneous temporal segments as a function of the type of 
segment (month or season), of the prewhitening method and of the length of the periods based on all 790 
seven time series considered in this study. 

 

Period Method Months Meteorological seasons 

≥ 10y 
N=115 

VCTFPW 26.1 % 80.0 % 

TFPW_Y 25.2 % 86.1 % 

< 8y 
N=55 

VCTFPW 5.5 % 74.5 % 

TFPW_Y 5.5 % 80 % 
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Figures 

 

Figure 1: Scheme of the new algorithm 795 
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Figure 2: Slope and confidence limits as a function of the time granularity for MK and the five 

prewhitening methods (indicated by colors) and for various temporal segmentation choices (indicated by 

symbols) for a) the aerosol number concentration for the 24 y period, b) the aerosol absorption 800 

coefficient for the 10 y period, c) the tropopause level altitude for the 50 y period, and d) the AOD for the 

10 y period. Larger symbols indicate ss trends and confidence limits are plotted only without time 

segmentation for clarity purposes. 

 

 805 

Figure 3 a) Statistical significance of slopes as a function of the prewhitening methods for the aerosol 
number concentration for the yearly trends computed from four meteorological seasons, for all periods 
(5y to 24y) and all time granularities (40 trends). The median is represented by the red line, the boxes are 
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the 25% and 75% percentiles, the whiskers the 0.7 and 99.3 percentiles and the red plus signs the outliers. 
Some outliers are not on the figure for purposes of clarity.   810 

 b) number of TFPW-Y false positives as a function of ak1
data and slope categories for all the computed 

trends of all time series for decadal periods. Categories with less than 3 points are not plotted. 

 

 

 815 

Figure 4: Slope differences as a function of ak1
data from the original data for all datasets and periods and 

for meteorological season time segmentation: a) PW minus VCTFPW slope (filled dots) and TFPW-Y 

minus VCTFPW slope (open squares) normalized by the VCTFPW slope, b) MK slope minus TFPW-Y slopes, 

c) MK minus TFPW-WS slopes and d) MK minus PW-cor slopes. The slope difference in b) c) and d) are 

normalized by MK slope. Not ss trends (PW taken as reference) are not plotted since the slopes cannot be 820 

distinguished from zero trend. Note the different y-axis ranges on these plots. 

 

https://doi.org/10.5194/amt-2020-178
Preprint. Discussion started: 17 June 2020
c© Author(s) 2020. CC BY 4.0 License.



25 
 

 

Figure 5: Distribution of the confidence limit intervals of the slope for the trend in aerosol number 

concentration for all periods (5y-24y) and time granularities as a function of the method for the 825 

meteorological seasons temporal segmentation. Box-whisker plotting as described for figure 3a. 

 

 

Figure 6: a) Lag-1 autocorrelation (ak1
data) of the original data as a function of the time granularity for the 

10 y time series of all time series,  bigger symbols correspond to ss ak1
data b) ak1 difference between the 830 

original data and the TFPW-Y data, and c) ak1 difference between the original data and the TFPW-WS 

data.  For b) and c) only ss cases are plotted because prewhitening methods are not applied when ak1 is 

not ss. 
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 835 

Figure 7: Statistical significance of the trends as a function of the time granularity and prewhitening 

methods for the zero degree level time series for 10y, 20y and 40y periods without temporal 

segmentation to address seasonality. The horizontal red and black lines correspond to the threshold of 

95% and 90% confidence level, respectively, and ss trends are also emphasized by bigger symbols.   

 840 

 

 

Figure 8: VCTFPW slope as a function of the time granularity for the division of the time series into a) 12 

months for the 10 y aerosol scattering coefficient and b) into four meteorological seasons for the 10 y 

aerosol absorption coefficient. Larger symbols indicate statistically significant slopes computed from the 845 

new algorithm. 
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Figure 9: Confidence limits of  VCTFPW as a function of the time granularity for various lengths of the 

aerosol scattering coefficient time series. Blue represents for no consideration of seasonalities; red 850 

represents division into 4 meteorological seasons and green represents division into 12 months. The color 

shading corresponds to the length of the period from 5 y (lightest) to 24 y (darkest). 

 

 

 855 

Figure 10: VCTFPW slopes and CL as a function of various periods for the daily aerosol absorption 

coefficient for the division of the time series into a) 12 months and b) four meteorological seasons. Colors 

represent time period lengths and bigger symbols represent ss trends. 

 

https://doi.org/10.5194/amt-2020-178
Preprint. Discussion started: 17 June 2020
c© Author(s) 2020. CC BY 4.0 License.



28 
 

 860 

Figure 11: a) The percentage of ss trends from the new algorithm (sect. 2.3) and b) mean confidence 

limits normalized by the slope as a function of normalized slope and N categories for all computed trends 

with period of at least a decade. The slopes are binned regularly (bin size = 0.5%) but N categories are 

irregular. Cells with less than 3 results were discarded in panel a). 
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